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Abstract

In many physical problems, one must maintain symmetry of numerical schemes – the symmetry arising due to geometry
and/or physical conditions defining the flow. The direct simulation of transitional plane Poiseuille flow presents one such
case, that motivated the present study. It has been shown here, using the method of analyzing non-periodic problems in
Sengupta et al. (2003), that compact and other high accuracy schemes display strong directionality of the algorithm and
such methods cannot be used for direct simulation of the physical flow. This prevalent, but unacceptable situation for DNS
is rectified in the present work and a new scheme is introduced that prevents this asymmetry from contaminating results.
The simulated transitional flow past 2D channel here, using the new scheme, are in agreement with experimental results
and other recent views of sub-critical instabilities.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Compact difference schemes, based on Padè approximation [18] have been proposed in [13,1] for solving
partial differential equations. Since then, it has gained in importance and has been extensively used to solve
problems of fluid dynamics [21,2,38,27] and wave propagation [11,8,37,27,14]. Various compact schemes have
been shown to possess enhanced accuracy and resolution in solving model problems with periodic boundary
conditions [11]. Based on this information and rudimentary numerical stability analyses [5,10], compact
schemes have also been used extensively for non-periodic problems with restrictions on boundary conditions
[2,36]. However, a new method of analyzing discrete computing techniques [27] for spatial discretization
without restrictions on boundary conditions now makes it possible to assess the suitability of any method
for discrete computing – a brief account of it is recounted below for the ease of understanding.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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For example, to evaluate first derivatives u 0 of a vector u(xj), j = 1. . .N, one can write down any discrete
computing scheme by
½A�fu0g ¼ ½B�fug. ð1Þ

While this is valid for both explicit (with A as an identity matrix) and implicit method, an equivalent explicit

representation of the same can be written down as
fu0g ¼ 1

h
½C�fug; ð2Þ
where h is the uniform grid spacing used for discretizing the domain. In compact schemes, one considers
numerical stencils in such a way that A and B are band-limited, although the C matrix is not compact. This
is due to the implicit nature of compact schemes. Compact schemes for solving model problems with periodic
boundary conditions, have A and B as periodic symmetric matrices. Many practical problems require using
non-periodic boundary conditions and for those, one-sided stencils are needed near and at the boundary
nodes, that make A and B matrices non-symmetric (non-Hermitian). In the interior of the domain, symmetric
entries of the B matrix correspond to non-dissipative central schemes, as in [1,21,11] and non-symmetric en-
tries of B matrix arises for upwinded compact schemes, as in [38,2]. This establishes the fact that whether one
chooses a symmetric or non-symmetric interior stencil, the requirements of boundary closures for non-
periodic problems, make A and B matrices asymmetric. Effects of such asymmetry near the boundary perco-
late in the interior of the computing domain. Thus, the eventual choice whether to use a central or upwind
interior schemes is dictated by the numerical stability of such schemes in the full domain.

It has been a practice to study the numerical stability of compact schemes (as in [21,37]) by looking at dis-
cretizations in the interior of the domain only. There is also the normal mode analysis method, referred to as
GKS or Lax stability theory [10], where estimates by semi-discrete eigenvalue analysis (by considering time-
continuous system) are developed for inner and boundary schemes. For IBVPs, described by first-order partial
differential equations, this theory is valid for systems where the spatial derivative term is multiplied by a square
Hermitian matrix. Unfortunately, compact schemes applied to non-periodic problems violate this requirement
and the limitation has been variously pointed out in [5,2,27]. Thus, it has been stated in [5,2] that the GKS
stability definition may be too weak and not a practical option. The shortcoming for the lack of an analysis
tool for non-periodic problem was addressed in [27], where a Fourier–Laplace transform based spectral method
has been developed for the purpose of evaluating spectral resolution, numerical stability and dispersion relation
preservation (DRP) property of any discrete computing technique. Subsequently, further improvements of this
analysis method have been provided in [29–31] to provide results for different spatial and temporal discretiza-
tion methods.

Use of this matrix-spectral analysis method has revealed many important results concerning compact
schemes [27] – one of which is the possibility of quantifying the spectral resolution of schemes for the full
domain. It has also been shown that compact schemes, with their mandatory boundary closures, exhibit strong
bias or directionality of information propagation. If the signal propagates in the direction of increasing node
numbers, this is revealed as added or subtracted numerical dissipation at different nodes near the boundaries –
even when central interior schemes are used for discretization (see Fig. 2 of [27]). It is as if there is an equiv-
alent inflow and outflow in the direction of increasing node numbers. It was noted that many commonly used
boundary closure schemes (as in [2,38]) actually cause numerical instability near the inflow. This type of
numerical instability is seen for first few nodes only. Near the outflow boundary opposite situation prevails
where large quantity of numerical dissipation is added in compact schemes. Added massive dissipation near
the outflow helps in the solution procedure of wave or convection phenomena, as this is equivalent to adding a
buffer layer at the outflow – a practice followed in computing transitional flows (as in [23,32]). Buffer layer
attenuates the waves very strongly and prevents significant reflection of waves from the outflow boundary.
However, numerical instability near the inflow does not cause problem in most cases, as the localized instabil-
ities at the inflow are damped as the signal moves in the interior. In many DNS, such numerical instabilities
play the role of continual excitation of flow at the inflow. It is, however, not established whether such numer-
ical instability-driven DNS produces the actual flow. In [27], an improved boundary closure scheme is pro-
posed (along with some new upwind compact schemes) that do not suffer from numerical instability at the
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inflow, while retaining the attenuating feature of the schemes near the outflow. In the present work, we will use
an upwind scheme of [27] (called the OUCS3-scheme) that has good numerical properties. These numerically
stable near-neutral upwind compact schemes have been used to solve external flow problems in [27,28,33]
where the directional and signal attenuating properties near the outflow of compact schemes have been used
for high Reynolds number transitional flow problems.

For internal flow problems that display geometric and physical symmetries, any compact scheme cannot be
directly used for simulation, because of the inherent directionality/asymmetry associated with them. To high-
light this problem of asymmetry of conventional compact schemes and alleviation of the same, we consider
here the 2D flow in a channel that has an in-built symmetry about the channel center-line for undisturbed lam-
inar flows. Once the correct equilibrium flow is calculated, it is possible to study the stability of such flows that
lead to transition.

Concomitant to other flow transition process, it was thought that the transition of channel flow also starts
with the growth of small perturbations of the equilibrium flow. This process is known to be characterized in
terms of the exponential growth or decay rate of individual eigen states. The least stable eigenmode(s) of the
linearized Navier–Stokes equation suitably obtained from the Orr–Sommerfeld equation are known as the
Tollmien-Schlichting (TS) waves. The base flow profiles that does not exhibit inflection points, supports 2D
TS waves that arises due to viscous instability of the flow. The Reynolds number at which the base flow
becomes unstable for the first time for any small disturbances is of significant interest and is known as the
critical Reynolds number. It is well known that wall bounded external flows are destabilized following this
primary instability route that subsequently can suffer secondary instability of finite amplitude waves to
small-amplitude 3D disturbances.

The above linear stability theory (see [7] for a detailed account) reports the critical Reynolds number (Rec)
as 5772 for the channel flow. However, cumulative experimental evidences suggest the flow to become turbu-
lent at Reynolds numbers at and around 1000 (see [45,46] for more recent experimental results) and thus the
channel flow is considered to become unstable due to nonlinear sub-critical instabilities. According to the non-
linear instability concept of [20], the global critical Reynolds number can therefore be assigned a value of
ReG = 1000. A weakly nonlinear theory due to Meksyn and Stuart [24] calculates this as ReG = 2900. In recent
times, several groups of researchers have investigated various mechanisms for sub-critical transition. In one
scenario, the sub-critical transition is attributed to the appearance of non-orthogonal or non-normal eigenvec-
tors of the linearized system (as variously discussed in [39–44]). It is conjectured in this model that the tran-
sition process is an outcome of superposing non-normal decaying modes and destructive interference of the

various modes can decrease as time evolves, leading to the possibility for transient energy growth which is some-

times quite large [43] – and according to [40], the growth can be high by a factor of 200. According to [42], such
non-modal growth is often easily triggered by imposed external excitation on the system. In another point of
view for sub-critical transition noted in pipe flow, Hof et al. [47] characterized transition to turbulence is via
the appearance of unstable �nonlinear traveling waves� in their experiments.

Present interest in studying transition in channel flow originates due to the observation of sub-critical insta-
bility of shear layers induced by convecting vortices outside the shear layer. In [22], this was demonstrated
experimentally and in [28], the physical mechanism was identified in terms of a new energy based receptivity/
stability theory without any approximation. In [33], this was shown responsible for the hitherto unexplained
leading edge contamination problem of swept-wing flow field at the attachment line.

In one of the interesting experimental results reported in [6], the following sequence of events are described
(taken from [7, p. 452]), for the experiments in rectangular channels with aspect ratios ranging from 40 to 160.
In the experimental set-up, the inlet pipe generated quite strong eddies at the upstream end of the channel. The
channel flow was classified depending on Re value (calculated with channel width as the length scale), in the
following manner: (a) when Re < 200, the convecting eddies cannot exist; (b) for 200 < Re < 2000, the eddies
exist and while convecting downstream perturb the wall shear layer continually showing formation of wall-
eddies. But, the perturbed field is not self-sustaining i.e. the eddies in the wall shear layer disappear as the
above-mentioned perturbing eddies (entering at the inlet) convect downstream and (c) for Re > 2000 the eddies
formed in the wall shear layer are self-sustaining, corresponding to truly turbulent flow created in the channel.
Thus, the eddies entering through the inlet, cause transition in the channel, if Re is greater than 2000. This type
of vortex-induced instability and transition in channel flow has not been studied so far.
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Present numerical study is undertaken to compute the vortex-induced instability in channel flow. To do
that, one must highlight the receptivity aspect of the flow field i.e. an undisturbed steady flow has to be
established initially when no excitation is applied. We are not aware of any other numerical investigation
that has established an undisturbed flow initially in the channel and interpreted flow transition as a conse-
quence of vortex-induced instability. Many DNS studies reported in the literature discusses perturbation
fields in a channel created to control an already existing unsteady flow irrespective of Reynolds number.
In [4], and other references in it, flow control from this perspective is studied and in [12] turbulent spots
are created by wall perturbation. The study of transition in channel flow reported in [16] would have been
of interest, if the transition process was studied starting from establishment of equilibrium flow whose
receptivity could be studied with respect to well-defined perturbation field. According to this study, perma-

nent patches of unsteady behavior, resembling the turbulent �puffs� observed in circular pipes, are found at low

Reynolds numbers for the transition caused by simultaneous perturbation by random vorticity along with
periodic disturbances at the inlet.

It is pertinent to discuss about various formulations and numerical schemes used by different investigators
for channel flow problems. Excepting [16] and the present study, all the other investigations use primitive var-
iable formulation. One of the major shortcomings of primitive variable formulation is its inability to satisfy
mass conservation exactly in the flow field. This by itself, can excite the flow by the distributed source(s)/
sink(s) depending upon the level of error. In contrast, when the formulation is in terms of stream function
(or vector potential for 3D flows) and vorticity, this source of error is totally absent. Problem associated with
pressure–velocity coupling in primitive variable formulation has been avoided in [17] by replacing continuity
and momentum equations with two equations for normal components of vorticity and velocity, thereby
removing pressure from the governing equation completely. However, the other two components of velocity
was obtained from an auxiliary equation derived via a Fourier expansion in the streamwise direction.

When one looks at different numerical methods used for channel flow simulation, it is realized that the spec-
tral methods are best for spatial discretization in terms of scale resolution, phase error and DRP properties
[27]. But imposing periodicity for the equilibrium and disturbance field in the streamwise direction seriously
restrict the spatial instability of the flow – specifically in the context of chaotic nature of flow during transition
[16]. For fully developed turbulent channel flow, the most noteworthy numerical method in terms of accuracy
and computational economy is the work reported in [35] that used a fourth-order explicit skew-symmetric dis-
cretization of Navier–Stokes equation for the channel flow for Re = 5600 while comparing it with the exper-
imental results of [19]. For the flow, a grid with (64 · 64 · 32) was found adequate to match the experimental
results. Chosen grid was uniform in the homogeneous directions while a stretched grid was chosen in the wall
normal direction.

In contrast, for physical plane computations as reported in [25,3] the spatial discretization is performed on
a staggered grid using second-order accurate explicit schemes, that are relatively poor in accuracy and DRP
property [29]. It is also noted that these methods are based on fractional-step method that brings in directional
asymmetry of the solution, even when the discretization schemes are symmetry-preserving for the differential
operators of the Navier–Stokes equation (see the discussion in [35]).

For time integration of Navier–Stokes equation, [25,16] have used second-order accurate Adams–Bash-
forth scheme. This scheme has been established as totally unsuitable in [29] for DNS due to the presence of
a spurious numerical mode that removes significant proportion of the initial condition due to the very high
attenuation rate. For chaotic flows, drastic alteration of initial condition will trap the solution in the wrong
attractor.

The above discussion shows the need to study the receptivity of channel flows to physical perturbations by
first calculating the unperturbed symmetric equilibrium solution by an appropriate method. Aim of the pres-
ent study is to establish a numerical procedure to capture the equilibrium solution and subsequently study its
receptivity to vortical perturbation introduced. The paper is structured in the following manner. In the next
section, we derive a symmetric high accuracy compact scheme, to obtain a symmetric steady equilibrium flow
field. The numerical properties of this scheme is also presented from the point of view of direct simulation. In
the following section, the developed symmetrized scheme is used to solve the second-order 1D wave equation
to show the unbiased nature of the scheme. In Section 3, the receptivity of the channel flow is studied for
sub-critical Reynolds numbers. This is followed by a summary.
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2. High accuracy symmetrized compact scheme

If the first derivatives at different nodes are represented by prime, following stencil is used for interior points
in many compact schemes:
bj�1u0j�1 þ bju0j þ bjþ1u0jþ1 ¼
1

h

X2

k¼�2

ajþkujþk. ð3Þ
For the compact scheme OUCS3, of [27], the following parameters are used: bj�1 ¼ 0:3793894912� g
60

;
bj = 1; aj�1 ¼ �0:7877868 þ g

30
; aj�2 ¼ �0:0458012þ g

300
and aj ¼ �11g

150
, with g = �2 for the necessary negative

feedback for OUCS3 scheme. This feedback stabilization is also responsible for providing directionality to the
flow of information. While this stencil alone is sufficient to evaluate first derivatives for periodic problems, for
non-periodic problems we have to supplement the relation given by Eq. (3) – as it cannot be used directly near
and at the boundary due to the stencil size on the right hand side. This is circumvented in OUCS3 by using the
following one-sided boundary closure schemes for j = 1 and j = 2, respectively [27]:
u01 ¼
1

2h
ð�3u1 þ 4u2 � u3Þ; ð4Þ

u02 ¼
1

h
2c2

3
� 1

3

� �
u1 �

8c2

3
þ 1

2

� �
u2 þ ð4c2 þ 1Þu3 �

8c2

3
þ 1

6

� �
u4 þ

2c2

3
u5

� �
; ð5Þ
where c2 = �0.025 was obtained as an optimal value in [27]. Similarly, one can write down the boundary clo-
sure schemes for j = N and j = (N � 1) using cN�1 = 0.09. Note that the sign of the coefficients in boundary
closure schemes are reversed on the right-hand side on the opposite boundaries and this lead to large difference
of added numerical dissipation near the boundaries causing asymmetry. With the help of relations given in
Eqs. (3)–(5), one can construct A, B and C matrices in Eqs. (1) and (2) readily. The interior stencil, given
by Eq. (3) applies at j = 3 to N � 2 and its structure makes A a tridiagonal matrix, while B is a penta-diagonal
matrix. We introduce briefly the analysis method [26,27] below that explains the above-mentioned asymmetry
clearly.

The analysis is performed in the wave number plane, with the unknown expressed in terms of bi-lateral
Laplace transform pair:
uðxjÞ ¼
Z kmax

kmin

UðkÞeikxj dk; ð6Þ
where kmin and kmax denote the minimum and maximum wave numbers that has been resolved by the discrete
computing method. Usage of the bi-lateral Laplace transform instead of Fourier series removes the restriction
of periodicity for the unknowns. In spectral methods, kmax = �kmin = p, as one works with complex variables
with its complex conjugate, so that the represented function is purely real. Other discrete computing methods
work in the physical plane with kmin = 0 and all the variables are 2p-periodic. The derivative of the function at
xj can be expressed for Fourier spectral method as u0ðxjÞ ¼

R
ikUðkÞeikxj dk and corresponding expression for

the numerical derivative using other discrete computing methods can be written as
u0ðxjÞ ¼
Z

ikeqUðkÞeikxj dk.
Using Eq. (6) in Eq. (2) and comparing with the above, it can be readily shown that
ikeqðxjÞ ¼
XN

l¼1

Clje
ikðxl�xjÞ. ð7Þ
Thus, the jth row of C matrix determines the derivative at the jth node – as given by keq in Eq. (7). This
provides one performance parameter of the discrete computing method as keq/k and is usually plotted for
compact schemes – as in [21,27] against kh in the range 0 to p.

In Figs. 1(a) and 2(a), the real and imaginary parts of keq/k plotted against kh in the range 0 to 2p with the
physical domain discretized using 31 points. One can see the directional property of upwind compact schemes
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Fig. 1. Real part of (keq/k) for (a) OUCS3 and (b) S-OUCS3, at the respective nodes using N = 31.
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from these figures by noting that the real part of keq/k portrays phase representation of the scheme and the
imaginary part shows the added numerical dissipation. From Fig. 1(a), one notes very high spectral accuracy
of OUCS3 scheme in comparison to other higher-order explicit and implicit schemes. The asymmetry of the
scheme is noted, as symmetrically located nodes about the mid-point (16th node) have different phase repre-
sentations. Fig. 2(a) representing added numerical dissipation also shows the asymmetry of the OUCS3
scheme. This figure show that the second node is unstable as [keq/k]imag is positive, while the second last node
(30th node) is severely damped due to very high added dissipation.

Asymmetric behavior of compact schemes can be clearly noted from Eq. (7) due to the asymmetric C

matrix. Two reasons for the asymmetry of C have been already identified as due to the upwinded nature of
the basic stencil given by Eq. (3) and due to the one-sided boundary closure schemes like the one given by
Eqs. (4) and (5). The first reason of asymmetry is due to non-zero value of g in Eq. (3). Thus, the asymmetry
due to this reason can be removed by using g = 0 in Eq. (3). Furthermore, symmetrization of C matrix can be
brought about by simply taking an arithmetic average of the entries in C matrix of Eq. (2) about the center
row. For example, perfect symmetry of the method will be ensured, if we replace the entries of the 2nd and the
30th row of C-matrix by their average. This symmetrizing operation is shown by the keq/k plot in Figs. 1(b)
and 2(b). Distinct improvements, in terms of resolution and added dissipation, are immediately evident by
comparing Fig. 1(a) with (b) and 2(a) with (b). From Fig. 1, it is noted that the phase representation or
the resolution at near-inflow nodes improved significantly, while from Fig. 2, it is noted that the instability
at j = 2 is also significantly reduced. The added dissipation near the outflow comes down by a factor of
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two or more. We will refer to this altered scheme as the symmetrized or simple the S-OUCS3 scheme in the rest
of the paper.

It is important to see if such benefits of symmetrizing are also extended for other numerical properties,
namely the amplification rate and DRP property. These properties are studied here with respect to the model
one-dimensional linear convection equation that represents many convective flows and wave phenomena,
ou
ot
þ c

ou
ox
¼ 0; c > 0. ð8Þ
This equation can be viewed as the one-dimensional linearized model of higher-order hyperbolic systems
presented in split-characteristic form. Even when higher-order hyperbolic systems are solved in unsplit form
in physical planes, very often the boundary conditions are represented in the characteristic form and the pre-
sented results are of relevance for such applications. Eq. (8) is non-dispersive and convects the initial solution
to the right with c. The non-dispersive property implies that the group velocity is equal to the phase speed c.
Hence, this equation is a good basis for testing numerical methods for solution accuracy and numerical insta-
bility and most importantly the dispersion error and DRP property. Dispersion error arises, as the numerical
dispersion relation is often significantly different from the physical dispersion relation for the adopted spatial
and temporal discretization schemes. In [27,31], group velocity is used to characterize DRP property following
the establishment of relevance of group velocity for computing time-dependent partial difference equations in
[34]. For dispersive systems, energy propagates in magnitude and direction with the group velocity and hence
it is necessary to ensure that the numerical group velocity is as close to the physical group velocity as possible
for the resolved space–time scales. This is discussed next along with the numerical stability of space–time
discretization schemes for Eq. (8).
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Consider the numerical solution of Eq. (8) subject to the following initial condition:
u0
m ¼ uðxm; t ¼ 0Þ ¼

Z
A0ðkÞeikxm dk. ð9Þ
The exact solution of Eq. (8) can be written down in terms of the initial solution as
uexactðx; tÞ ¼
Z

A0ðkÞeikðx�ctÞ dk. ð10Þ
The numerical solution can be represented at x = xm and t = tn by un
m ¼

R
Ûðk; tnÞeikxm dk, so that a numer-

ical amplification factor can be introduced by GðkÞ ¼ Ûðk;tnþ1Þ
Ûðk;tnÞ . This is the same amplification factor that is used

in von Neumann normal mode stability analysis.
One can compare the exact solution with that obtained numerically by using Eq. (9) in discretized Eq. (8) to

obtain general numerical solution [29] as
un
m ¼ uðxm; tnÞ ¼

Z
A0ðkÞðG2

r þ G2
i Þ

n=2eikðxm�nbÞ dk; ð11Þ
where the numerical amplification factor is given by G(k) = Gr(k) + iGi(k) and tanb = �Gi/Gr. Comparing
Eqs. (10) and (11), it is noted that b plays a role similar to c and can be related to the numerical dispersion
relation or the phase speed as follows.

From the numerical solution of Eq. (11), one notes the phase of it to be given by k(xm � nb) = k(xm � cNtn),
thereby defining the numerical phase speed, cN [29,31] by
ĉN ðkÞ
c
¼ b

xDt
; ð12Þ
where the numerical dispersion relation is given by xN ¼ ĉN k as opposed to the physical dispersion relation
x = ck. Therefore, the numerical group velocity is found out from the numerical dispersion relation as given
by [29,31]
V gN ðkÞ
c
¼ 1

N ch
db
dk
; ð13Þ
where Nc = cDt/h is the CFL number.
For DNS, one requires neutral stability (jGj = 1) and zero phase error (ĉN ðkÞ ¼ c). These requirements are

met if the chosen method ensures G2
r ¼ cos2ðkhN cÞ for all wave numbers. Numerical properties – keq/k, G(k)

and VgN(k) – are adequate to characterize any numerical method.
For example, to solve Eq. (8), if one employs second-order central (CD2) spatial scheme and Euler time

integration strategy, then it is easy to show that the numerical amplification factor is given by [29]
Gðkh;NcÞ ¼ ½1þ N 2
csin

2kh�1=2e�ib;
where tanb = �Nc sin(kh). Various relation given here so far is sufficient for periodic problems and is same for
all discrete nodes.

For non-periodic problems, the corresponding quantities will vary from node to node. If for a discrete com-
puting scheme the spatial derivative at the jth node is evaluated using Eq. (7), then it is given by
ouj

ox
¼ 1

h

XN

l¼1

Clje
ikðxl�xjÞuj. ð14Þ
Utilizing this in Eq. (8), one gets
ouj

ot
þ cuj

h

X
Clj½cos kðxl � xjÞ þ i sin kðxl � xjÞ� ¼ 0. ð15Þ
This equation can be used to obtain wave number dependent amplification factor at the jth node, Gj(k),
once the time integration method is fixed. For example, for Euler time integration the amplification factor
at the jth node is given by
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Gjðkh;NcÞ ¼ Gjr þ iGji ¼ 1� N c

XN

l¼1

Clj ðcos kðxl � xjÞ þ i sin kðxl � xjÞ
� �

; ð16Þ
0.99
and the numerical phase relation can be similarly obtained in terms of bj, where tan(bj) = �Gji/Gjr. Thus, hav-
ing obtained the amplification factor at the jth node, one can obtain the numerical phase speed and group
velocity at the same node by replacing b by bj in Eqs. (12) and (13). Based on previous results in [31], we will
use four-stage Runge–Kutta (RK4) time integration strategy, as it has good numerical stability and DRP
property. If one denotes by LðuÞ ¼ �c ou

ox, then the steps used in RK4 are given by
 9
Step-1 : uð1Þ ¼ uðnÞ þ Dt
2

L½uðnÞ�;

Step-2 : uð2Þ ¼ uðnÞ þ Dt
2

L½uð1Þ�;

Step-3 : uð3Þ ¼ uðnÞ þ DtL½uð2Þ�;

Step-4 : uðnþ1Þ ¼ uðnÞ þ Dt
6

L½uðnÞ� þ 2L½uð1Þ� þ 2L½uð2Þ� þ L½uð3Þ�
� 	

.

0

.

5.
The amplification factor for the RK4 time integration scheme, for jth node can be shown to be given by [26]
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Fig. 3 (continued )
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Gjðkh;N cÞ ¼ 1� Aj þ
A2

j

2
�

A3
j

6
þ

A4
j

24
; ð17Þ
where
Aj ¼ Nc

XN

l¼1

Clje
ikðxl�xjÞ. ð18Þ
Using Eqs. (17) and (18), one obtains the amplification factors at all spatial nodes for any combinations of
kh and Nc for RK4 time integration scheme. In the above, we can use the symmetrized C matrix by replacing
the entries of the jth and (N � j + 1)th rows of the C matrix by their arithmetic average, where N is the number
of points. Such symmetrizing operation will also alter the above discussed numerical properties. In Fig. 3, Gj at
different representative nodes are shown by taking N = 101. On the left column of Fig. 3, shown are the ampli-
fication rate contours for the jth node and on the right corresponding results for (N � j + 1)th nodes for the
original OUCS3 method. In the middle column of Fig. 3, corresponding results are shown for the S-OUCS3
scheme at the same nodes. Results for j = 2 exhibit unstable nature, while for j = 100 we note excessive damp-
ing for OUCS3 scheme. In contrast, S-OUCS3 method has significantly improved amplification rates – that is
more or less independent of j – an attractive feature of this new method. Similar improvements have been
brought about at all near-boundary points, while it is seen that there is negligible asymmetry of G for
j P 6 onwards.
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In Fig. 4, the effects of symmetrizing is shown on VgN, by plotting the properties of OUCS3 scheme on
either side, with the S-OUCS3 value plotted in the middle column. Once again, an overall improvement of
DRP property by symmetrizing is noted. It is also seen though that one has to take very small values of
Nc to avoid effects of spurious dispersion. Also, for kh P 1.8 the dispersion error is large and in the com-
putations we would choose h in such a way that spurious dispersion is completely avoided by limiting the
maximum kh as given here.

Information contained in Figs. 3 and 4 can be effectively used for computing Navier–Stokes equation also.
For such computations reported in the present work in Figs. 7–13, we have typically used a time step size of
Dt = 3 · 10�5. Also, for the Navier–Stokes computations, we have used a variable grid with the smallest
Dx = 0.008. If we consider the convection operator of the Navier–Stokes equation, then a choice of convection
speed of unity fixes the value of Nc as 3.75 · 10�3. From Fig. 3, it is noted that chosen numerical scheme has
near-neutral amplification rate for a wide range of wave numbers for this Nc value. If the dissipation term is also
included in Eq. (8), then the corresponding Péclet number is given by, Pe = Nc/Re. An order of magnitude anal-
ysis would show – for Re = 2000 and above value of Nc – a requirement for the chosen time step is also similarly
given by a Dt of identical magnitude.

We emphasize that the motivation for the S-OUCS3 scheme is to preserve the inherent symmetries of the
underlying differential operators, while maintaining the requirement of DNS. To show the unbiased nature of
the S-OUCS3 scheme we consider a problem of simultaneous wave propagation by solving the second-order
wave equation in the next section.
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Fig. 4. Scaled numerical group velocity (VgN/c) contours in (kh–Nc)-plane for (a), (c) OUCS3 and (b) S-OUCS3 at the indicated nodes.
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3. Solving second-order wave equation

To ensure the unbiased bi-directional property of S-OUCS3 scheme, the following second-order 1D wave
equation is solved:
ntinu.K. S
o
2u

ot2
¼ c2 o

2u
ox2

ð19Þ
that represents a pair of wave equations propagating the initial condition, given by Eq. (9) in positive and
negative x-directions with non-dispersive phase speeds ±c, respectively. It is possible to calculate the second
derivative by S-OUCS3 scheme, by applying it twice in succession. If we discretize the time derivative by the
leap frog scheme and the spatial derivative by applying the S-OUCS3 scheme, as given by Eq. (14), then the
difference equation is obtained as
unþ1
j � 2un

j þ un�1
j ¼ ½NcP j�2D2uj: ð20Þ
With P j ¼
P

lClje
ikðxl�xjÞ=h, one can analyze the leap frog – S-OUCS3 scheme for solving Eq. (19) following

the identical procedure used for Eq. (8). As time marching is performed by a three time level scheme, one
would have two amplification rates governed by the following quadratic equation:
G2
j � ð2þ ½NcP j�2ÞGj þ 1 ¼ 0. ð21Þ
 00 0. 123456 9 6
0 . 91 j =97 c5 09 9122345 j92122 0.5 0 5.0.50.9

9
9
9 90 9 01ed)engupta / Journal of Computational Physics 215 (2006) 245–273
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If the two roots of Eq. (21) k1 and k2 are given by
k1 ¼ F eig; ð22Þ
k2 ¼ HeiC; ð23Þ
then the general solution can be written as
un
m ¼

Z
MðkÞ½F �neiðkxmþngÞ dk þ

Z
NðkÞ½H �neiðkxmþnCÞ dk; ð24Þ
where M(k) and N(k) are the spectral weights that apportion the initial solution to the left and right running
waves. A similar analysis for first-order wave equation solved by three time-level schemes is given in [31] for var-
ious explicit and implicit schemes and can be referred for details. The essential difference is that solving a first-
order equation by three time-level scheme brings in extra numerical mode that is essentially spurious. Here, both
the modes for the numerical solution of Eq. (19) are physical and are important. Having obtained the amplifi-
cation rates, one can calculate the numerical group velocity and phase speeds for these two modes following the
procedure outlined in the previous section.

It is possible and also expedient to calculate o2u
ox2 in Eq. (19) directly by central compact scheme as given in

[21]. We will compare the present S-OUCS3 scheme with the method of [21] for solving Eq. (19). The scheme
of [21] is reproduced here for completeness sake,
j ¼ 1 : u001 þ 11u002 ¼ ð13u1 � 27u2 þ 15u3 � u4Þ=h2; ð25Þ
j ¼ 2 : u001 þ 10u002 þ u003 ¼ 12ðu3 � 2u2 þ u1Þ=h2; ð26Þ

3 6 j 6 N � 2 : au00j�1 þ u00j þ au00jþ1 ¼
b

4h2
ðuj�2 þ 2uj þ ujþ2Þ þ

a

h2
ðuj�1 � 2uj þ ujþ1Þ. ð27Þ
Other two equations for j = N and N � 1 are the images of Eqs. (25) and (26), respectively. In [21], a sixth-order
accurate scheme was proposed for which a = 2/11; a = 12/11 and b = 3/11 in Eq. (27). To estimate spectral res-
olution of compact schemes for evaluating o2u

ox2 following the representation of Eq. (6), one can write u00 ¼
�
R

k2
eqUðkÞeikx dk and then the normalized measure of spectral resolution of schemes for second derivative

can be represented by
k2

eq

k2 . Major difference between the methods of [21] and the S-OUCS3 scheme is the superior
spectral resolution of the former in the mid-wave number range. This is shown in Fig. 5(a), where the normalized

spectral resolution (
k2

eq

k2 ) of these two schemes are plotted against kh in the admissible range of 0 to 2p for any
interior node only. It is evident that for all nodes, S-OUCS3 scheme has k2

eq equal to zero at kh = p, while
for the method of [21] this is close to 0.7 for all nodes. This property of S-OUCS3 is same for all compact schemes
that evaluate second derivatives by using first derivative methods twice.

Assembling the above set of linear algebraic relation one can obtain the equivalent P 2
j of Eq. (21) for

this method and calculate the amplification factors. In Fig. 5(b) and (c), the amplification rates for the
scheme of Eqs. (25)–(27) and S-OUCS3 are plotted in (kh–NC)-plane. These are for both the modes.
For both the compact schemes, the thumb-like region ABC as stable for the first mode, while for the sec-
ond mode the region ABC is unstable – as shown in the figure. Note that outside ABC, both the modes
are perfectly neutrally stable and is of main interest for accurate computing. It is interesting to note that
both the methods define a critical CFL number (N �c) below which the method is neutrally stable at all kh

values. For the S-OUCS3 scheme this is equal to 0.8736 and is higher than the other scheme for which
N �c ¼ 0:7519. Thus, from a computational point of view both the schemes appear useful, with the S-
OUCS3 scheme allowing slightly larger time steps. The dispersion relation property does not allow us
to take kh greater than 1.8 (as explained with respect to Fig. 4 before) and the superior spectral resolution
of the scheme of [21] is of little use.

We use both these methods to solve Eq. (19) that defines the propagation of bi-directional wave packets
whose initial profile is given by
u0ðxÞ ¼ 2e�16x2

eik0x. ð28Þ
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The specific wave packet chosen corresponds to k0h = 1. For the particular choice of k0h, both the methods
would be accurate to represent the propagating wave – as seen from Figs. 4 and 5. This wave packet will split
equally into two, as time progresses moving at the phase speed of ± c = 1. The computed solution in the



A. Dipankar, T.K. Sengupta / Journal of Computational Physics 215 (2006) 245–273 259
physical domain�3 6 x 6 3 are shown at the indicated times in Fig. 6 and it is identically same as the analytical
solution. Both the stencils (3) and (27) are central in nature – bias originates near the boundary due to one-sided
nature of the stencils (4), (5) and (25), (26) used to construct these two schemes. However, presented results in
Fig. 6 show that the waves propagate symmetrically at all times. These results indicate that the S-OUCS3 scheme
can be used for solving practical problems. In the following, we use it to solve the problems of sub-critical insta-
bility in 2D channel flows.
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260 A. Dipankar, T.K. Sengupta / Journal of Computational Physics 215 (2006) 245–273
4. Transitional flow in a channel

We have used the above S-OUCS3 and the OUCS3 scheme for the solution of two-dimensional
Navier–Stokes equation in a channel, with the governing equations in the stream function (w) – vorticity
(x) formulation given by the following stream function equation (SFE) and the vorticity transport equation
(VTE):
r2w ¼ �x ð29Þ

and
o~x
ot
þ ð~V � rÞ~x ¼ 1

Re
r2~x. ð30Þ
The above non-dimensional equation has been obtained by using the channel height and center-line velocity
as the length and velocity scales, respectively. A time scale is constructed from these two scales. These equa-
tions are solved in the transformed (n–g) plane obtained using a generalized orthogonal mapping and are given
by
o

on
h2

h1

ow
on

� �
þ o

og
h1

h2

ow
og

� �
¼ �h1h2x ð31Þ
and
h1h2

ox
ot
þ h2u

ox
on
þ h1v

ox
og
¼ 1

Re
o
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h2

h1

ox
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� �
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og
h1

h2

ox
og

� �� �
; ð32Þ
where h1 and h2 are the scale factors of transformation defined by
h2
1 ¼

ox
on

� �2

þ oy
on

� �2
and
h2
2 ¼

ox
og

� �2

þ oy
og

� �2

.

In the flow direction, we have solved problem using either an uniform or a stretched grid. For the stretched
grid, the following transformation is used:
xðnÞ ¼ L 1� tanh½b1ð1� nÞ�
tanh½b1�

� �
ð33Þ
with 0 6 n 6 1 and b1 = 1.55 chosen for appropriate clustering. This transformation was also used in [4] and is
preferred because the metric h1 = xn has only three discrete wave numbers present and thus, would produce no
problem in terms of aliasing error. This is readily seen, if we inspect f = 1/h1 that is given by,
f ¼ tanh½b1�
4b1L

e2b1ð1�nÞ þ e�2b1ð1�nÞ þ 2
� �

.

The bi-lateral Laplace transform of f is given by
F̂ ðkÞ ¼ tanhðb1Þ
2b1L

dðkÞ þ 1

2
dðk � 2ib1Þ½cosh 2b1 � sinh 2b1� þ

1

2
dðk þ 2ib1Þ½cosh 2b1 þ sinh 2b1�

� �
.

Thus, F̂ ðkÞ is non-zero only at k = 0 and ±2ib1 and would not cause any aliasing. It is for the same reason,
we employ a grid in the wall-normal direction with hyperbolic tangent stretching function. We note that the
flow has a geometrical symmetry about the channel center-line. Thus, S-OUCS3 scheme will be used to dis-
cretize the convection terms involving g derivative. The flow has predominant convection in the x-direction
and this physical nature of the flow is best represented when the n derivative term is discretized by OUCS3
scheme in VTE.
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The SFE, Eq. (31) is solved by using the conjugate gradient method due to [15], subject to the no-slip
boundary condition on the channel wall. The solution residue is driven up to ninth decimal place for con-
verged solution.

The wall vorticity is calculated from xb ¼ � 1
h2

2

o2w
og2 using an explicit representation of the second derivative

by one-sided formula, as described in [26,33]. The VTE is solved by discretizing the convection terms of
Eq. (32) using OUCS3 and S-OUCS3 schemes as described earlier and second-order central differencing is
used for the diffusion terms. The time integration is performed by using four stage Runge–Kutta method,
as given in Section 1.

In the homogeneous direction, at the outflow, the following convective boundary conditions are used for
SFE and VTE, respectively:
oux

ot
þ uc

oux

ox
¼ 0 ð34Þ
and
ox
ot
þ uc

ox
ox
¼ 0; ð35Þ
where ux is the streamwise Cartesian component of the velocity and uc is the bulk-averaged streamwise con-
vecting speed at the outflow at the previous time-step. These convective boundary conditions are routinely
used for vortex-dominated flows as they avoid build-up of vorticity near the outflow.
4.1. Establishment of equilibrium flow

To study the receptivity and instability of the flow, it is necessary to establish an equilibrium flow first. Once
an equilibrium flow is identified, next the stability/receptivity of the flow is investigated with respect to differ-
ent classes of disturbances. Keeping in view of the experimental conditions described in [6,7], two cases have
been computed here for Re = 800 and 2000, perturbed by vortical disturbance introduced near the inlet of the
channel. We have taken 1001 points in the streamwise direction and 201 points in the wall-normal direction
using hyperbolic tangent stretched grids – as given by Eq. (33). The computational domain extends 30H in the
streamwise direction. This is the type of domain size that was used in [3] where a (1024 · 128) grid has been
used. Thus, the present grid is more refined in the inhomogeneous direction than that was used in [3].

In Fig. 7(a) and (b), we show the evolution of wall vorticity on the top and bottom wall of the channel with
time for Re = 800 case when OUCS3 and S-OUCS3 schemes have been used in the wall-normal direction,
respectively, using identical grid. In the streamwise direction, both the cases used OUCS3 scheme. It is noted
that the S-OUCS3 scheme keeps the flow symmetric about the channel centerline indefinitely, while the asym-
metry is very evident with the OUCS3 scheme right from the beginning, as seen in Fig. 7(a). Once the flow
becomes asymmetric, a single vortex is seen to form in the middle of the channel near the inflow. Presence
of bias in the OUCS3 scheme reinforces this vortex continually – that leads to the breakdown of the solution
shortly after t ” 2. This numerical instability near the inflow prevents one use the OUCS3 scheme in the
y-direction as well to simulate the equilibrium flow. It may be possible to contain the numerical instability
by low-order dissipation. But, it is to be noted that the low-order methods have poor DRP property and
the spurious dispersion will create unsteady flow instead of the steady equilibrium flow one expects to get
in the absence of any excitation. Thus, even when numerical instability is prevented, most popular methods
produces unsteady flow – as in [16,3].

In Fig. 8, we show the eventual steady state solution that is obtained for Re = 800 case using the S-OUCS3
scheme in the y-direction. In Fig. 8(a), variation of wall vorticity with streamwise coordinate is shown at
t = 18, 21 and 24.1. The approach and convergence to the steady state solution at t = 24.1 is smooth. In
Fig. 8(b), evolution of the vorticity field to its equilibrium state is shown using vorticity contour plots, with
negative-valued contours shown by dotted lines. Also, the zero-vorticity lines are marked in this figures to
follow the formation of a saddle point. The vorticity values show perfect anti-symmetry in the wall-normal
direction at t = 24.1. The zero-vorticity line shows the presence of a full-saddle point marked as S at this
time. In the initial stages, this saddle is not seen and once it forms, the flow becomes completely symmetric.
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Formation of the saddle is an indication of the steady state – whose receptivity to imposed disturbances is
studied in the present exercise. We have also simulated the flow for Re = 800, using uniform grid in a channel
of length L = 20H. That simulation showed the formation of the saddle point at the same location at a slightly
earlier time of t = 24.

In Fig. 9, vorticity contours are shown plotted at different times for the case of Re = 2000. From the figures,
it is apparent that the equilibrium is reached at t = 59.8 – that is once again indicated by the formation of
saddle-point.

4.2. Receptivity of channel flow to single viscous vortex

It is well-known that all flow perturbations can be expressed in terms of three basic types – acoustic, vor-
tical and entropic disturbances. For incompressible flows, one cannot study the acoustic receptivity. Also,
when heat transfer is not considered – it is not necessary to consider entropic disturbances. Thus, in the pres-
ent study we will only consider vortical perturbations to study the receptivity of 2D channel flow.

As the flow inside the channel is viscous everywhere, we study the receptivity of the flow due to an induced
viscous vortex. We have chosen the Lamb-Oseen vortex (LOV) that represents the exact axisymmetric solution
of two-dimensional Navier–Stokes equation given by [9]
x�ðr�; t�Þ ¼ C�0
4pmt�

exp
�ðr�Þ2

4mt�

 !
;
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For this vortex, C0 is the vortex strength and s represents the non-dimensional time. Smaller the value of s,
more compact the vortex would be and vice versa. Also, in Eq. (36), the time of introduction of this perturbing
vortex is arbitrary and can be set as user-specified by choosing the value of s, to vary the intensity of inter-
action. For the present case, a positive LOV of strength that is 10% of the average wall vorticity is introduced
at the channel centerline at x = 2H starting from t = 25 for Re = 800 case. We have purposely introduced a
strong perturbation here, following the observation in [6] for Re 6 1000.

In Fig. 10, the stream function contours are shown following the introduction of the positive LOV. From
the figure at t = 25 one sees a strong unsteady separation on the top wall and relatively weaker unsteady sep-
aration on the bottom wall. In [28], formation of unsteady separation bubble is identified as vortex-induced
instability and the qualitative nature of the interaction is determined by the sign of the convecting vortex with
respect to the wall shear layer vorticity sign and the distance between the two. For example, for a positive vor-
tex at the center-line would destabilize the lower wall shear layer ahead of it and destabilize the upper wall
shear layer behind it due to transient energy growth. In [28], these interactions were related to the creation
of adverse pressure gradient ahead on the lower wall and behind on the upper wall. While a single recirculation
region is formed on the bottom wall, one notices two such bubble on the top wall. It is noted furthermore that
the bubble on the lower surface increases in size, while the bubble on the top surface becomes smaller and
smaller. The secondary bubble on the top surface, moves towards the channel center and dissipates quickly
and after t = 30, this is not seen anymore. At the same time, the single primary bubble on the lower wall
strengthens and beyond t = 34 it induces a secondary weak bubble ahead of it. For this sub-critical excitation
case of Re 6 1000, the vortical perturbation eventually diffuses and dissipates itself – as also noted in the
experiments of [6]. This vortex-induced instability can be understood in terms of the receptivity approach
explained in [28] in terms of disturbance energy growth.

Corresponding vorticity contour plots are shown in Fig. 11, with negative contours shown by dotted lines.
While w contours at t = 28 show similar bubbles on both walls, the vorticity contours reveal significant dif-
ferences. Three positive vortices are seen to form on the top half – one of which is the introduced LOV. In
contrast, a single negative vortex forms in the lower half of the channel ahead of the LOV. It is to be noted
that the interaction among the LOV and wall vorticity distribution is mutual in nature. Thus, the LOV itself
will change in time, in a different manner to that given by Eq. (36). At t = 31, the LOV is seen to grow smaller
while receding towards the top wall and the negative vortex growing bigger, while being anchored to the bot-
tom wall of the channel. Beyond t = 34 both these vortical structures are seen to weaken as they convect
downstream. Beyond t = 41, induced vortical structures become very weak and the flow-field inside the chan-
nel revert back to the symmetric equilibrium contribution. To test that the receptivity of the wall shear layer
does not depend upon numerical error(s), another case is run that is identical in all respect to the case of
Fig. 11, except the sign of the introduced LOV is negative. Corresponding vorticity contour plots are shown
in Fig. 12. As compared to the snap-shots of Fig. 11 at identical times, here the contours are the mirror images
of the corresponding figures shown.

Next, another case is computed for Re = 2000, a value for which [6] reported sub-critical unstable flow.
Here the LOV is introduced at t = 20 at the center-line of the channel with a 10-time reduced strength of
1% of the wall vorticity value, as compared to the case of Re = 800. The computed vorticity distribution is
shown in Fig. 13, at the indicated time frames. The last frame corresponds to the time, when the LOV is near
the outflow. The LOV creates a pair of vortices across the center-line – with the positive one ahead of it. This
situation continues till t = 35 and at t = 40 a pair of detached eddy is seen, with the positive vortex dominating
over the negative one. At t = 50 the residual effect of it is seen as a chain of small vortices at the center-line.
The effective speed of convection of these vortices are seen to be around 0.80 times the center-line velocity.

4.3. Transition of a channel flow created by vortex street

In the previous sub-section, we have studied the unit-process where an equilibrium channel flow is desta-
bilized by a single vortex of definitive strength and size. However, in many practical situations, the channel
flow is destabilized by simultaneous multiple vortices in a transient manner. Here, we report the results of
a case where the channel flow is destabilized by the shed vortices of a square cylinder placed near the inflow
of the channel, as shown in Fig. 14. The Reynolds number based on channel height (H) and centerline velocity
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is again taken as 2000 and the flow domain is given by 0 6 x 6 30H. A square cylinder is placed at the cen-
terline of the channel at a distance of H from the inflow of the channel. The square cylinder is of side
a = 0.048H, so that the Reynolds number for the flow past the cylinder is 96. At t = 0, a parabolic velocity
profile is used everywhere inside the channel. For this problem, a buffer layer technique was used (as given
in [23,32]) to avoid spurious reflection of disturbances from the outflow. Here, the buffer domain used in
the range 26 6 x 6 30 and the other details are as in [23,32].

In [48], one such case was investigated experimentally where a strictly two-dimensional channel flow was
created in a flowing soap-film and destabilized by a comb placed along the centerline of the channel.
Fig. 1(a) of the reference shows the presence of coherent eddies near the centerline created by the comb.
The square cylinder of the present case represents one tooth of the comb.

In Fig. 15(a) initial development of the flow field is shown for x 6 10. At t = 2, two pairs of attached sym-
metric vortices are noted in the near wake of the cylinder, with the negative vortices in the top half and positive
vortices are found in the lower half. As time progresses these pair of vortices elongates and are destabilized. As
a consequence of the instability, flow becomes asymmetric and vortices are shed alternately in the wake. These
shed vortices destabilizes the wall shear layer of the channel, that is clearly visible starting from t = 6 onwards.
The convecting vortices shed from the cylinder continuously cause vortex-induced instability inside the wall
shear layer. The positive shed vortices mainly destabilizes the lower wall shear layer and causes negative streak
of vorticity to be ejected upwards. In the same way, the negative shed vortices destabilizes the upper wall shear
layer that causes positive streak of vortices to be ejected downwards. Thus, further downstream of the cylin-
der, the convected structures are combinations of vortices due to alternate shedding from the cylinder and the
vortices ejected from wall shear layers by vortex-induced instabilities whose unit process was shown in the pre-
vious subsection.

In Fig. 15(b), results are shown in the domain 1 6 x 6 20 to show the long-time establishment of the flow.
In these figures, one can see the vortex-induced instabilities that create unsteady separation on the channel
walls. It is also noted that the shed vortices from the cylinder reduces in strength and size as the flow convects
downstream. However, the vortex-induced instability effects persist in the downstream.

5. Summary

In many physical problems one must maintain symmetry of numerical schemes – the symmetry arising
due to geometry and/or physical conditions defining the flow. The direct simulation of transitional plane
Poiseuille flow presents one such case, that motivated developing a new high accuracy scheme that is
ideally suited for capturing flow fields exhibiting symmetries. It has been shown here, that standard com-
pact schemes display directionality of the algorithm and they are incapable of even capturing the steady
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symmetric equilibrium flows whose physical instability will lead to turbulence. Instead numerical instability
and spurious dispersion affects many DNS results. This prevalent, but unacceptable situation, is rectified
here and the new scheme is used to solve the receptivity problem for a 2D channel flow to imposed vor-
tical perturbation.

Finally, a case is considered where the channel flow is destabilized by the alternately shed vortices from a
square cylinder. The Reynolds number of the flow is 2000, based on channel height and centerline velocity. Based
on the side of the square cylinder, the corresponding Reynolds number is 96. It is shown that the transition caused
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by the shed vortices is due to a vortex-induced instability that is computed satisfactorily by the proposed compact
scheme.
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